
All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel® Distribution for GDB*
A Cross-Architecture Application Debugger

HLRS Workshop September 2023

Pascal Bähr

pascal.rene.baehr@intel.com

mailto:pascal.rene.baehr@intel.com

Agenda

▪ Why Intel® Distribution for GDB*?
▪ Key features
▪ System Requirements Overview
▪ DPC++ Linux* Demo
▪ Debugging Multi-Tile GPU
▪ C++: Debugging OpenMP* offload
▪ Other Debug Capabilities
▪ Demo: CLI on Linux
▪ Demo: Visual Studio Code via SSH

*Other names and brands may be claimed as the property of others.

3

Why Intel® Distribution for GDB*?

4

Overview

• Companion tool to Intel compilers and libraries

• Cross-architecture debugging

• Unified debugging experience for oneAPI ecosystem
• C, C++, SYCL, OpenMP, or Fortran

• Debug parallel and threaded applications
• Single session for CPU and GPU code
• Capable of handling thousands of threads simultaneously

Intel® Distribution for GDB*

https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-for-gdb.html

5

Key features

Multi-node debugging MPI applications Not supported

Multi-thread debugging On the same GPU Supported

Multi-user debugging On the same GPU Not supported; GPU is
blocked by the debugger

Multi-target debugging debug GPU and CPU code
in the same session

Supported

• Command line debugging on the same machine: gdb-oneapi
• IDE Integration – Visual Studio, Visual Studio Code

• 2 machines required: CPU host and GPU target
• Device support:

6

Windows*

Language Support

Data Parallel C++ (DPC++)

C \ C++

Fortran

OpenMP

IDE Support

Visual Studio Code *

OS Support

Windows* 10, 64-bit

GPUs CPUs

Intel® Core™ Processor family

Intel® Xeon® Processor family

FPGA

Emulation device only

Microsoft Visual Studio 2022*

Intel® Distribution for GDB* Release Notes
Intel® Distribution for GDB* System Requirements

Intel® Xeon® Scalable
Performance processors

Windows* 11, 64-bit

Intel® Arc™ Series

https://software.intel.com/content/www/us/en/develop/articles/gdb-release-notes.html
https://software.intel.com/content/www/us/en/develop/articles/gdb-system-requirements.html

7

Linux*

Language Support

Data Parallel C++ (DPC++)

C \ C++

Fortran

OpenMP

IDE Support

Eclipse * (native)

OS Support

GPUs FPGA

Emulation device only

Visual Studio Code *

Intel® Distribution for GDB* Release Notes
Intel® Distribution for GDB* System Requirements

CPUs

Intel® Core™ Processor family

Intel® Xeon® Processor family

Intel® Xeon® Scalable
Performance processors

Intel® Arc™ Series

Intel® Data Center GPU Flex
Series

Intel® Data Center GPU Max

Ubuntu* 20.04, 22.04

SLES* 15

RHEL* 8, 9

https://software.intel.com/content/www/us/en/develop/articles/gdb-release-notes.html
https://software.intel.com/content/www/us/en/develop/articles/gdb-system-requirements.html

11

Other Debug Capabilities

12

oneAPI Debug Tools and Variables

▪ Specified level of tracing for SYCL Plugin Interface:

• SYCL_PI_TRACE={1,2,-1}

▪ GPU backends:

• Profiling Tools Interfaces for GPU (PTI GPU) - Level Zero Tracer ze_tracer

• Intercept Layer for OpenCL - How to Use the Intercept Layer for OpenCL™
Applications

▪ OpenMP Offload:

• LIBOMPTARGET_DEBUG={-1, 1, 2, 3}

▪ Compiler options – more options are available Fortran!

▪ Clang Sanitizers, valgrind etc
Intel LLVM Compiler: Environment Variables docs

https://github.com/intel/pti-gpu/tree/master/tools/ze_tracer
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top/debugging-and-profiling/how-to-use-the-intercept-layer-for-opencl-applications.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top/debugging-and-profiling/how-to-use-the-intercept-layer-for-opencl-applications.html
https://github.com/intel/llvm/blob/sycl/sycl/doc/EnvironmentVariables.md#sycl_pi_trace-options

13

Useful Links

▪Basic:

•Documentation & Code Samples

• Intel® Distribution for GDB* Release Notes

• Intel® Distribution for GDB* System Requirements

▪Advanced:

• oneAPI Debug Tools at Intel® oneAPI Programming Guide

•Get Started with OpenMP* Offload to GPU for the Intel®
oneAPI DPC/C++ Compiler and Intel® Fortran Compiler

https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-for-gdb.html#gs.p6k6my
https://software.intel.com/content/www/us/en/develop/articles/gdb-release-notes.html
https://software.intel.com/content/www/us/en/develop/articles/gdb-system-requirements.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2023-2/overview.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html

14

DPC++ Linux* Demo
(Command Line)

15

Array Transform Sample

▪ Prerequisites:

• Get Started Guide to configure the debugger

▪ Clone oneAPI-samples:

git clone https://github.com/oneapi-src/oneAPI-samples.git

cd oneAPI-samples/Tools/ApplicationDebugger/array-transform

▪ Set oneAPI environment:

source /opt/intel/oneapi/setvars.sh

Debugging with Intel® Distribution for GDB* on Linux* OS Host

https://software.intel.com/en-us/get-started-with-debugging-dpcpp
https://github.com/oneapi-src/oneAPI-samples
https://github.com/oneapi-src/oneAPI-samples.git
https://www.intel.com/content/www/us/en/develop/documentation/debugging-dpcpp-linux/top.html

16

Array Transform Sample

▪ Enable i915 debug support in kernel persistently:

• Requires sudo!

• cat /etc/default/grub

• Make sure your GRUB_CMDLINE_LINUX_DEFAULT contains:

 i915.debug_eu=1 drm.debug=0xa i915.enable_hangcheck=0
i915.debugger_timeout_ms=0

▪ Enable i915 debug support in Kernel:

• cat /sys/class/drm/card*/prelim_enable_eu_debug

• Make sure the output is 1

Debugging with Intel® Distribution for GDB* on Linux* OS Host

https://www.intel.com/content/www/us/en/develop/documentation/debugging-dpcpp-linux/top.html

17

Diagnostics Utility

▪ For the default oneAPI installation:
• python3 /opt/intel/oneapi/diagnostics/latest/diagnostics.py --filter

debugger_sys_check –force

▪ Expected output:

18

Array Transform Sample on CPU

▪ Build:
icpx -fsycl -g -O0 array-transform.cpp -o array-transform

▪ Run:
 ONEAPI_DEVICE_SELECTOR=*:cpu ./array-transform

▪ Run under the debugger:

 ONEAPI_DEVICE_SELECTOR=*:cpu gdb-oneapi --args ./array-transform

19

Array Transform Sample on GPU

▪ Build:
icpx -fsycl -g -O0 array-transform.cpp -o array-transform

▪ Run:
ONEAPI_DEVICE_SELECTOR=level_zero:gpu gdb-oneapi ./array-transform

▪ Enable debugging:
export ZET_ENABLE_PROGRAM_DEBUGGING=1

export IGC_EnableGTLocationDebugging=1

▪ Run under the debugger:
 ONEAPI_DEVICE_SELECTOR=level_zero:gpu gdb-oneapi --args ./array-transform

20

Debugging on GPU

▪ info inferiors - make sure you are on GPU now

▪ info threads - inspect threads

▪ thread 2.<Thread_number>:<SIMD_lane> - switching between
threads

▪ info locals - print local threads variables

▪ disassemble - see disassemble

▪ set scheduler-locking step - step to the next

21

DPC++ Linux* Demo
(Visual Studio Code - Remote)

22

Setting up VS Code

▪ Prerequisites:

• Get Started Guide to configure the debugger for remote debugging

• Setup oneAPI environment on target machine

▪ Install oneAPI extensions for VSC on remote

▪ Install oneAPI-samples via sample browser:

Debugging with Intel® Distribution for GDB* on Linux* OS Host

https://software.intel.com/en-us/get-started-with-debugging-dpcpp
https://github.com/oneapi-src/oneAPI-samples
https://www.intel.com/content/www/us/en/develop/documentation/debugging-dpcpp-linux/top.html

23

Visual Studio Code – oneAPI GDB extension

Intel Confidential

▪ Install and setup the oneAPI Debug extension for VS Code

https://marketplace.visualstudio.com/items?itemName=intel-corporation.oneapi-gdb-debug

24

Visual Studio Code – oneAPI GDB extension

Intel Confidential

▪ Generate and setup a launch configuration

▪ Set environment variables

• For debugging

• For execution on GPU

25

Visual Studio Code – oneAPI GDB extension

Intel Confidential

▪ Inspect variables

26

Visual Studio Code – oneAPI GDB extension

Intel Confidential

▪ Inspect call stack

27

Visual Studio Code – oneAPI GDB extension

Intel Confidential

▪ Inspect GPU threads and SIMD Lanes

28

Visual Studio Code – oneAPI GDB extension

Intel Confidential

▪ Inspect GPU threads and SIMD Lanes

29

Debugging Multi-Tile GPU

30

ZE_AFFINITY_MASK

Value Behavior

0, 1 all devices and sub-devices are reported (same as default)

0 only device 0 is reported; with all its sub-devices

1 only device 1 is reported as device 0; with all its sub-devices

0.0 only device 0, sub-device 0 is reported as device 0

1.1 only device 1 is reported as device 0; with its sub-devices 1 and 2
reported as sub-devices 0 and 1, respectively

0.2, 1.3,
1.0, 0.3

both device 0 and 1 are reported; device 0 reports sub-devices 2 and 3
as sub-devices 0 and 1, respectively; device 1 reports sub-devices 0
and 3 as sub-devices 0 and 1, respectively; the order is unchanged.

31

Selecting Different Devices

▪ $ gdb-oneapi --args ./array-transform

▪ $ ZE_AFFINITY_MASK=0.0 gdb-oneapi --args ./array-transform

▪ $ ZE_AFFINITY_MASK=1.0 gdb-oneapi --args ./array-transform

32

Debugging OpenMP* Offload (C++)

33

Matmul build and run
▪ Build:

• icpx -O0 -g -fiopenmp -fopenmp-targets=spir64 matmul_offload.cpp -o

matmul_debug

▪ Disable device optimizations:
export ZET_ENABLE_PROGRAM_DEBUGGING=1

export IGC_EnableGTLocationDebugging=1

▪ Set up offloading:

• export OMP_TARGET_OFFLOAD="MANDATORY"

▪ Debug:

• gdb-oneapi ./matmul_debug

Get Started with OpenMP* Offload to GPU for the Intel® oneAPI DPC/C++ Compiler and Intel® Fortran Compiler

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html

QUESTIONS?

Notices & Disclaimers
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details.
No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, Xeon, Core, VTune, OpenVINO, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

36

	Slide 1: Intel® Distribution for GDB* A Cross-Architecture Application Debugger
	Slide 2: Agenda
	Slide 3: Why Intel® Distribution for GDB*?
	Slide 4: Overview
	Slide 5: Key features
	Slide 6: Windows*
	Slide 7: Linux*
	Slide 11: Other Debug Capabilities
	Slide 12: oneAPI Debug Tools and Variables
	Slide 13: Useful Links
	Slide 14: DPC++ Linux* Demo (Command Line)
	Slide 15: Array Transform Sample
	Slide 16: Array Transform Sample
	Slide 17: Diagnostics Utility
	Slide 18: Array Transform Sample on CPU
	Slide 19: Array Transform Sample on GPU
	Slide 20: Debugging on GPU
	Slide 21: DPC++ Linux* Demo (Visual Studio Code - Remote)
	Slide 22: Setting up VS Code
	Slide 23: Visual Studio Code – oneAPI GDB extension
	Slide 24: Visual Studio Code – oneAPI GDB extension
	Slide 25: Visual Studio Code – oneAPI GDB extension
	Slide 26: Visual Studio Code – oneAPI GDB extension
	Slide 27: Visual Studio Code – oneAPI GDB extension
	Slide 28: Visual Studio Code – oneAPI GDB extension
	Slide 29: Debugging Multi-Tile GPU
	Slide 30: ZE_AFFINITY_MASK
	Slide 31: Selecting Different Devices
	Slide 32: Debugging OpenMP* Offload (C++)
	Slide 33: Matmul build and run
	Slide 34: QUESTIONS?
	Slide 35: Notices & Disclaimers
	Slide 36

